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Abstract. The two-dimensional surface of a sphere can be parametrized by coordinates
representing two charged pions acting as Goldstone bosons of a brokenSU2 symmetry. We
construct in full concrete detail, and in a general class of coordinate systems, all the relevant
structure forming a framework for this low-energy effective theory.

1. Introduction

It is now some 25 years since nonlinear chiralSU2 × SU2 Lagrangians were introduced to
study the experimental consequences of the emergence of three massless pions as Goldstone
bosons, and the results have been clearly exhibited in excellent review articles [1, 2]. Later
a very detailed and remarkably successful effective chiral Lagrangian perturbative treatment
of low-energy physics was proposed by Gasser and Leutwyler [3, 4] and is now regarded
as standard in the field. In such schemes the transformations of the Goldstone bosons
are nonlinear and general treatments of the required coset-space mathematics are well
established and elegant in form [5, 6]. Also, the consequential construction of invariant
nonlinear Lagrangians is standard and well known [7, 8].

From time to time, as in the case of effective chiral Lagrangians mentioned above,
there are developments in physics which create a resurgence of interest in the structure.
This was particularly the case when supersymmetricσ models were first taken seriously
[9, 10] because of similarities of their properties in two dimensions with the structure of four-
dimensional gauge theories [11]. The generalization toCPN models in four dimensions [12]
followed swiftly, and a seminal paper by Zumino [13] showed the central place of geometry
in the models, with the K̈ahler metric of complex manifolds providing an elegant description
of the supersymmetry. There then followed a decade in which the main focus of attention
was on preon like models in which the dominant theme was that the supersymmetry helped
to ensure the existence of light fermions by relating them to bosons which were in turn
kept light by the Goldstone theorem. A general analysis of the required features can be
obtained by working backwards through the literature from the references given in papers
by Kotcheff and Shore [14], and by Buchmüller and Lerche [15], both of which are written
with authority and also have fine introductory sections.

Recently there have been two developments which suggest a yet further resurgence
of interest in these topics. The electric–magnetic duality conjectured by Olive and
Montonen [16] several years ago, and shown by Osborn [17] to be related toN = 4
supersymmetric gauge theories, has emerged in a generalization in the work of Sen [18].
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Moreover, this seems to play an important role in the work of Seiberg and Witten [19]
involving N = 2 supersymmetric gauge theory in four dimensions. Crucial to an
understanding of this work seems to be the nonlinear Goldstone bosonic parameterization of
a manifold which supports a K̈ahler metric thus allowing the supersymmetric partners of the
Goldstone bosons to be introduced and their interactions to be studied. The number of low-
energy bosons required by the supersymmetry is larger than the number of true Goldstone
bosons resulting from the spontaneous breaking of the underlying non-supersymmetric
theory. A similar geometrical structure is then required to treat the sector containing
monopoles and their interactions. Although these topics are well understood and have
been clearly presented, the technical challenge is still formidable for new workers hoping
to enter this exciting and rapidly moving research field. The chiral sphere model presented
here is just the general coordinate treatment of the bosonsic manifold underlying quite
literally the simplest supersymmetric sigma model which can be constructed. It serves as
a useful toy model, retaining many features of much more realistic schemes, which will
allow investigation of the salient properties with the minimum of mathematical technique
required. On an apparently unrelated front, following the emergence of the supersymmetric
standard model as a major candidate for physics beyond the standard model, has come
the realization that supersymmetry may appear in nature at energies which may soon be
experimentally accessible. Thus a supersymmetric extension of chiral perturbation theory
becomes of real interest. Already, two attempts have been made in this direction [20, 21]
both based on linear supersymmetric models in which the symmetry is broken (but the
supersymmetry preserved) as the Higgs mass becomes infinite. Of course, even if only two
flavours of quarks are considered, the simplest bosonic model is based on the coset space
formed by the quotient of chiralSU2 × SU2 by the central vectorSU2. Unfortunately,
this is not a K̈ahler manifold and has to be extended, by the inclusion of extra coordinates
interpreted as fields for pseudo-Goldstone bosons, before spinor partners of the Goldstone
bosons can be introduced and a supersymmetric scheme can be described. Not only is this
technically difficult (although well described by Itohet al [22] following the prescription
by Bandoet al [23] but the couplings of the superpartners are not unique. Once again the
chiral sphere provides a simple concrete model which has unique couplings of superpartners
because it is based on a Kähler manifold. Moreover, this time the chiral sphere structure is
uniquely embedded in the larger more physical scheme, thus providing not only qualitative
understanding but also direct physical contact. We stress again that the sphere is the simplest
of the Kähler manifolds.

It seems that supersymmetric sigma models are ripe for further investigation, and
obviously the simplest underlying K̈ahler manifold is the 2-sphere [24]. What is
presented in this paper is a direct treatment of the manifold structure, the nonlinear
transformation laws of the Goldstone bosons, and the construction of the invariant
Lagrangians, all in a general class of coordinate systems. Curiously, although the 2-
sphere has been extensively studied this does not seem to have been recorded before.
There are, of course, versions in coordinates resulting from constrained linearσ models,
treatments in exponential (standard) coordinates, projective coordinate presentations, and
most importantly stereographic coordinate representations revealing the Kähler structure.
Our general coordinate treatment includes and relates all of these, and we believe it reveals
the structure in much the same way that covariant notation clarifies special relativity. We
shall show how this model, although not physical, is uniquely embedded in chiralSU2×SU2

(which is indeed of direct physical interest as noted above) and retains many of the relevant
features thus allowing them to be studied in a much simpler and concrete way. It is a very
useful theoretical laboratory.
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2. The chiral sphere

We start this section by reviewing [25] the structure of chiralSU2×SU2 to establish notation.
The transformation of the fundamental (quark) multiplet is specified by

q → q − iθi 1
2τ

iq − iφi 1
2τ

i(iγ5)q (1)

to lowest order in the real parametersθi and φi , 1 6 i 6 3, whereτ i are the familiar
Pauli matrices. Note the extra(iγ5) factors in the final terms which are included to ensure
that the Goldstone bosons of this scheme will be pseudoscalar. We emphasize that this
is precisely the usual symmetry of the quark and gluon QCD Lagrangian in the 2 flavour
case (ignoringU(1) complications) which leads to the familiar low-energy approximation
to hadronic physics [1–4]. Ourγ5 is not Hermitian, but self-barred, so that under the
transformations in equation (1) the quark mass termmq̄q is not invariant and so should
not appear in the unbroken Lagrangian, whereas the kinetic term proportional toq̄γ µ∂µq is
invariant because theγ µ anticommute with theγ5 in the axial generators. The crucial step
in describing the Goldstone bosons is to parametrize the coset space defined by the quotient
of the SU2 × SU2 by the vectorSU2 parametrized by theθ i alone. This takes the simple
form

L̂ = exp
{− 1

2iθniτ
i(iγ5)

}
(2)

where the Goldstone fields are described by

Mi = Mni (3)

with

(ni)(ni) = 1 (4)

so that

(Mi)(Mi) = M2 (5)

andθ is an arbitrary dimensionless function of the quotient ofM by a constantfπ . Provided
that θ is proportional to this quotient in the limit of small fields thenfπ is proportional
to the pion decay constant. This arbitrariness may be viewed as the freedom to change
coordinate systems on the coset space, or to redefine the field variables describing the
mesons. Notice that the Goldstone fieldsMi really do serve to describe three pseudoscalar
pions as usual. This notation is reserved for this general coordinate system (as opposed
to πi for the nonlinearσ -model coordinates, say), and we stress again that ifθ is an
arbitrary function ofM (normalized toM for small fields) then all coordinate systems (with
overlapping coordinate patches, i.e. not prohibited by singularities) are incorporated in this
one description. (Examples will be given in section 4 of this paper.) If we define projection
operators by

PL = 1
2(1 + iγ5) (6)

and

PR = 1
2(1 − iγ5) (7)

so that

PLPL = PL (8)

PRPR = PR (9)

PLPR = 0 = PRPL (10)



4460 K J Barnes et al

and

PL + PR = 1 (11)

then we can rewrite equation (2) as

L̂ = LPL + L−1PR (12)

whereL is unitary and theγ5 dependence is now contained solely in the projection operators.
It is then clear that we can deal with

L = exp
{− 1

2iθniτ
i
}

(13)

and reinstate theγ5 factors only when wishing to consider the explicit couplings of the
Goldstone bosons to matter fields. The action of a group elementg (of SU2 × SU2) on the
coset space can be specified by [7]

gL = L′h (14)

where

L′(Mi) = L(M ′
i ) (15)

specifies the nonlinear transformations of the Goldstone boson fields,

h = exp
{− 1

2iλiτ
i
}

(16)

and theλi depend on the fields and the group parameters. What we have are nonlinear
transformations among theMi (which give a realization of the group) which are linear
under the action of theSU2 subgroup, thus neatly describing a situation where the full
group is still realized, but in a manner well suited to spontaneous breaking to the subgroup.
The Goldstone bosons are a linear representation of theSU2 subgroup only. Although the
procedure extends to other representations, for our present purposes it will be sufficient to
stay mostly in the fundamental representation.

We are now ready to discuss the chiralSU2 structure embedded in this framework.
Consider the subgroup of the chiralSU2 × SU2 group specified in equation (1) by retaining
only the parametersθ3 and φA, with A = 1 and 2. Obviously this is anSU2 subgroup,
and we call it chiralSU2 in recognition of the(iγ5) factors with theτA generators. Clearly
the τ 3 generates aU1 subgroup, so that the coset space obtained by the quotient of chiral
SU2 by this U1 is parametrized by coordinatesMA, A = 1 and 2, which can be viewed
as describing two Goldstone pseudoscalars. Notice that the embedding of thisSU2/U1

structure in theSU2×SU2
SU2

structure is uniquely specified. Moreover, if we setM3 andn3 to
zero in our previous discussion, then

L = exp
{− 1

2iθnAτ
A
}

(17)

and setλA = 0, so

h = exp
{− 1

2iλ3τ
3
}

(18)

whereθ is now an arbitrary function of

M2 = M2
1 +M2

2 (19)

which whenM3 becomes zero remains as the only independent scalar. Although we realize
that many readers will instantly appreciate the nature of this embedding, experience has
taught us that confusion often arises at this point and we hope that a more detailed discussion
will not divert readers too far from the real theme. Suppose, in the quark model, we define
the vector and axial currents, as usual, by

V
µ

i = q̄γ µ 1
2τiq and A

µ

i = q̄γ µ 1
2τi(iγ5)q (20)
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and implement the transformations in equation (1) by charges

QV
i =

∫
V 0
i d3x and QA

i =
∫
A0
i d3x (21)

by using free field commutation relations. Naturally, while the symmetry is unbroken, the
charges are time independent as a result of being constructed from the time components of
the conserved Noether’s currents. The chiralSU2 × SU2 can now be written as

[QV
i ,Q

V
j ] = iεijkQ

V
k (22)

which is the algebra of the central (vector) subgroup, together with

[QV
i ,Q

A
j ] = iεijkQ

A
k (23)

confirming that the axial charges are in a three-dimensional representation of the vector
subalgebra, and

[QA
i ,Q

A
j ] = iεijkQ

V
k (24)

showing the closure of the axial parts of the algebra into the vector subalgebra and revealing
the symmetric space structure which clarifies the coset space construction we introduced
earlier. Now where is the chiralSU2 algebra embedded? Obviously, as there are only two
inequivalent types ofSU2 in SU2 × SU2, this one must be equivalent to one of the more
obvious ones. Of course the left and rightSU2 algebras defined by the generators

QL
i = 1

2(Q
V
i +QA

i ) (25)

and

QR
i = 1

2(Q
V
i −QA

i ) (26)

have the property that

[QL
i ,Q

R
j ] = 0 (27)

so that the centralizer of either of theseSU2 algebras in theSU2 × SU2 is the other. This
is quite unlike the way in which the vector subgroup is embedded as seen in equations (23)
and (24), so that the chiralSU2 must be equivalent to the vector subgroup. We can take
the unitary operator which impliments this equivalence to be

U = exp
(

1
2iπPLτ

3
)

(28)

which induces the mapping V1

V2

V3

 →
 A1

A2

A3

 (29)

which is a trivial relabelling of the form we took withθ3 and φA as parameters, and
obviously has the correct commutation properties. This equivalence confirms that the coset
space identified as the quotient of chiralSU2 by the U1 generated byV3 is indeed the
two-dimensional surface of a sphere as we have claimed. Of course, the mapping in
equation (29) clearly mixes parity types, so for the physical applications we have in mind
the basis ofτ3 with τA(iγ5) as generators is the appropriate one justifying as it does our
notationMA as two fields describing pseudoscalar mesons, and dictating the form of the
couplings to matter fields correspondingly exactly as in the full chiralSU2 × SU2 scheme.
Note particularly that chiralSU2 never appears as the denominator of a quotient defining a
coset space. It is a subgroup ofSU2 × SU2 which is equivalent to the vectorSU2 but at no
stage is considered as a conserved subgroup in a broken symmetry scenario. Thus theMi ,
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and subsequently theMA are always interpreted as fields describing pseudoscalar Goldstone
bosons. The point is that chiralSU2 is a subgroup of chiralSU2 × SU2, and when the
latter is spontaneously broken to the vectorSU2 (with pseudoscalarsMi) then chiralSU2

is broken to theU1 generated byV3 (with MA as the pseudoscalars). Describing broken
chiral SU2 × SU2 supersymmetry is both difficult technically and ambiguous [20–23], but
the broken chiralSU2 scheme (embedded uniquely in all possible broken chiralSU2 × SU2

supersymmetrizations) is unambiguously defined in the framework provided by the very
simple K̈ahler structure of the 2-sphere [13].

We can now see the advantages of using this chiral 2-sphere as a model. It is simpler than
the chiralSU2 × SU2 scheme even in the purely bosonic sector. Moreover, the 2-sphere
is a Kähler manifold and so admits a supersymmetric extension in which the Goldstone
bosons acquire fermionic (Weyl) partners without yet more quasi-Goldstone bosons and
fermions being forced into the model [24]. Also the resulting couplings among the particles
are uniquely specified. Contrast this with the situations in [20] and [21] where the number
of bosons doubles, as does the number of associated fermions, and finally the couplings
involving these new particles are not uniquely specified. Of course, these latter cases are
closer to the physics of the real world (they have three pions for example), but the embedded
chiral 2-sphere model retains many significant features and is a far more tractable theoretical
laboratory. We now present the details of this model.

3. Transformations and invariants

First we establish the transformation laws of the Goldstone fields under chiralSU2. It is
sufficient to work to lowest order in the group parameters and we denote the transformations
by

g : MA → MA + θ3K3A + φBKBA (30)

whereK3A andKBA are Killing field components constructed from theMA themselves. Of
course, the action under an element of theU1 subgroup is linear so thatK3A is already
known, but we shall let this emerge from our calculations. Expanding equation (14) we see
that we need to solve[
1 − 1

2θ3τ3 − 1
2φBτB

]
L(M) = [L(M)+ L,Aθ3K3A + L,AφBKBA] × [

1 − 1
2λ3τ3

]
(31)

where

L,A = ∂L(M)

∂MA

(32)

λ3 = θ3 + φAλA3 (33)

and we note that in this particular simple example raising and lowering of indices is of no
consequence if we preserve the order of indices on the Killing vector fields. It is clear that
the calculations require nothing more than the construction of functions of Pauli matrices,
but even so a little technique can be helpful. The quantities

P± = 1
2(1 ± nAτA) (34)

share the projection operator properties given in equations (8) to (11) for thePL andPR,
as can easily be seen because thenA form a unit vector. This means that equation (17) can
be expressed as

L = P+ exp
(− 1

2iθ
) + P− exp

(
1
2θ

)
(35)
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and other functions can be similarly handled. Also, from equation (19) we see that

M,A = nA (36)

and differentiating

MA = MnA (37)

yields

MnA,B = δAB − nAnB (38)

so that

P,±B = ± 1
2τA(δAB − nAnB)

= ± 1
2

(
τB + nBP

− − nBP
+)
. (39)

We note that again the tensors(δAB −nAnB) andnAnB have the by now familiar projection
operator properties, so that calculations become systematic and straightforward. A little
simple algebra applied to equation (31) reveals that

KBC = M cotθ(δBC − nBnC)+ nBnC
dM

dθ
(40)

and

K3C = ε3BCnBφ = ε3BCMB (41)

whereε3BC is the familiar totally antisymmetric Levi–Civita tensor. As noted previously
K3C is linear in theMC , and we recognise the usual rotational transformation of a vector.

We have already found the transformation laws for the Goldstone bosons and, as the
reader can easily check, these are identical to those given in [25] when the truncation of
variables described in section 2 is applied. Returning to equations (14) and (18) we note,
following [5], that if ψ is an irreducible representation of the unbroken subgroup, so that
here (keeping to the fundamental representation) we have simply that

ψ → ψ − 1
2θ3τ3ψ (42)

then under the full group action

ψ → ψ − 1
2θ3τ3ψ − 1

2iφBλB3τ3ψ (43)

where

λB3 = εBA3MA tan(θ/2)/M. (44)

Note that this transformation law is linear inψ , but with nonlinear coefficients constructed
from MA; it and its generalizations are known as standard field transformations, and these
exhaust all field types. Again the reader can easily check that the result in equation (44)
follows trivially from the corresponding result in [25] when our truncation method is applied.

What remains is to show how to construct invariant Lagrangians from the fields we have
introduced. It is at this point that objections arise to the direct extraction of further results
from [25] by our truncation method. The difficulty is that later results in [25] explicitly use
a property that is not available in the chiralSU2 substructure. In the full chiralSU2 × SU2

the Killing vectors can be combined into so called left and right combinations which viewed
as matrices(KL)AB and (KR)AB are non-singular and can be inverted. Unfortunately, in
the chiralSU2 substructure onlyKAB andK3C exist so that this trick (which is a useful
shortcut) is not directly available. However, as we shall see,KAB itself is non-singular, and
by a slight extension of the calculations we do eventually reach the same results.
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So what invariants can be constructed? This question was answered elegantly in [7].
The first point is that no invariant can be constructed from theMA alone. In particular this
implies that an invariant mass term is not available for the Goldstone bosons in accordance
with the Goldstone theorem. Now consider derivatives of the fields. The key concept is
found by rewriting equation (14) in the forms

L′ = gLh−1 (45)

and

L′−1 = hL−1g−1 (46)

and differentiating the former to obtain

∂µL
′ = g

[
(∂µL)h

−1 + L(∂µh
−1)

]
(47)

where∂µ differentiates the fieldsMA with respect to the coordinatexµ, but g is constant
because we are considering only global transformations. From equations (46) and (47) we
see

L−1
(
∂µL

) → L′−1 (
∂µL

′)
= h

[
L−1

(
∂µL

)]
h−1 + h

(
∂µh

−1
)

(48)

and recognise that, becauseh is in the subgroup, the transformation does not mix the coset
space and subgroup generators in the algebra. Thus, if we write

2iL−1
(
∂µL

) = τBa
B
µ + τ3v

3
µ

= aµ + vµ (49)

then equation (48) gives

aµ → haµh
−1 (50)

and

vµ → hvµh
−1 + h

(
∂µh

−1
)

= vµ + h
(
∂µh

−1
)

(51)

where the final simplification in equation (51) follows because the subgroup is Abelian. It
follows from equation (50) that the quantity

1
2 Tr

[
aµa

µ
]

is an invariant, and in fact this is the only invariant which can be made from the Goldstone
bosons which involves exactly two derivatives. Usually the notation of a covariant derivative

1µM
B = aBµ (52)

is introduced and the expression

L = 1
2(1µM

B)(1µMB) (53)

written for the Lagrangian which has a leading order expansion in fields appropriate for
interpretation as a kinetic-energy term. Isham [8] introduced the metric form

L = 1
2gAB(∂µM

A)(∂µMB) (54)
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for this Lagrangian, thus giving a geometric understanding in terms of the metricgAB on
the coset space manifold. We return briefly to equation (51) to note that if there is a matter
field ψ which transforms under theU1 subgroup so that

ψ → ψ − 1
2iθ3τ

3ψ (55)

then [5] shows that under the full action of the chiralSU2

ψ → ψ − 1
2θ3τ3ψ − 1

2iλA3φAτ3ψ (56)

and so

1µψ = ∂µψ − 1
2iv3

µτ
3ψ (57)

is a covariant derivative transforming asψ itself in equation (56), and may be used to form
invariant terms involving matter fields in the usual way [5, 7].

In the remainder of this section we derive the expressions for the covariant derivatives
and metric by direct manipulation of the Pauli matrices, and remaining strictly within the
chiral SU2 framework. (Of course, we hope to find the results which could be read off from
[25] by our truncation scheme.) We start by introducing a little extra calculational device
by defining

Rij = 1
2 Tr[L−1τiLτj ] (58)

where, as before,i and j lie in the range 1–3. Using the same formalism as in equations
(31) to (39), we easily establish that

RAB = (δAB − nAnB) cosθ + nAnB (59)

RA3 = εAB3nB sinθ = −R3A (60)

and

R33 = cosθ (61)

where the projection operator properties are again noted. From equation (45) we see that
the quantities appearing in the covariant derivatives can be expressed as

aµB = (∂µMC)aCB (62)

and

vµ3 = (∂µMC)vC3 (63)

where

aCB = i Tr[τBL
−1L,C ] (64)

and

vC3 = i Tr[τ3L
−1L,C ] (65)

which we shall shortly see are particularly convenient forms. Now we return to our defining
equation (31) and extract

− 1
2iτAL = L,BKAB − 1

2iλA3Lτ3 (66)

and we can deduce that

RAD = KABaBD (67)

by premultiplying byτDL−1 and taking the trace. SinceKAB is non-singular, we can see
that

aFD = (
K−1

)
FA
RAD (68)
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and hence

aFD = (δFD − nFnD)
sinθ

M
+ nFnD

dθ

dM
(69)

follows from equations (40) and (59). Similarly, returning to equation (66) we can also
deduce that

RA3 = KABvB3 + λA3 (70)

by premultiplying byτ 3L−1 and tracing. Hence we find directly that

vF3 = 2

M
sin2(θ/2)εFZ3nZ (71)

by using equations (44) and (60). Thus, combining equations (57), (63) and (71), we see
that

1µψ = ∂µψ − i

M2
(∂µM

C)εCD3M
D sin2(θ/2)τ3ψ (72)

emerges as the covariant derivative of a standard fieldψ , transforming in the same way as
ψ itself under the action of the group. Similarly, combining equations (52), (62) and (69),
we see that

1µM
B = (∂µMC)

{
(δCB − nCnB)

sinθ

M
+ nCnB

dθ

dM

}
(73)

= (∂µMC)

M2

{
sinθ

M
(M2δCB −MBMC)+ dθ

dM
MCMB

}
(74)

emerges as the covariant derivative of the Goldstone fieldsMB . It follows that, from
equations (52), (53), (62) and (69),

L = 1
2(1µM

B)(1µMB) (75)

= 1

2
(∂µM

C)(∂µMD)

{
sin2 θ

M2
(δCD − nCnD)+ nCnD

(
dθ

dM

)2
}

(76)

= 1
2gCD(∂µM

C)(∂µMD) (77)

where the metric is given by

gCD = sin2 θ

M2
(δCD − nCnD)+ nCnD

(
dθ

dM

)2

(78)

and we note that the lowest order term in the expansion ofθ has been taken to beM in
order to retain the conventional normalization of the kinetic term of the Goldstone bosons.
This completes our task, and we see that all the results can indeed be found from those in
[25] by our truncation method. We do realize that we have not given a strict mathematical
proof of the relationship between chiralSU2×SU2

SU2
and the chiralSU2/U1 embedded in it. It

is, however, gratifying to see that all the results we need do come out directly with exactly
the same form as by our truncation method applied to those in [25].

One last footnote. In the ordinary treatment of rotations in 3 dimensions we are all
very familiar with the discovery of the transformation laws of spinors ofSO3 resulting
from ‘taking the square root’ of the unimodular matrix inSU2 used to describe the rotation
of a 3-vector viewed as a bispinor. Exactly the analogous situation holds when nonlinear
realizations are involved rather than linear representations. We would like to stress that
what we now present in this respect is in no way new or innovative, it has all been done
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long ago and with much more generality. But our version is very simple and concrete. It
goes back (at least) to Schouten [26] in 1954, and probably well before that date. More
recently it has featured in work on chiral Lagrangians with gauged Wess–Zumino terms by
Kaymakcalanet al [27, 28], and on bosonized Nambu–Jona–Lasinio models by Wakamatsu
and Weise [29]. To some extent in these latter papers, but especially in the extensive
work of Bandoet al [30], the resulting nonlinear transformations have been interpreted as
revealing a ‘hidden’ or ‘secret’ symmetry, in which gauge bosons are postulated to appear
dynamically. This appears to have been first attempted by Balachandranet al [31]. We
would like to stress that our simple effects are precisely as naive as they seem to be, and
are in no way intended to be interpreted in this controversial ‘secret’ or ‘hidden’ manner.
Our work simply describes the spontaneous breaking of global symmetries. If and when it
may be used (as suggested earlier) in conjunction with gauge theories it is not expected to
be connected with dynamically generated gauge bosons.

Returning to our theme, just as in general relativity where tetrads or vierbeine are
introduced to allow the treatment of spinors by ‘taking the square root of the metric’, here
the unitary unimodular square root nature ofL versusL2 can be exploited by introducing
Killing vectors for the square root system. This concept is easier to understand in concrete
form. From our defining equation (14) we can see that

L
∼
g

−1
= h−1L′ (79)

where we have inverted the equation and then applied the involutive outer automorphism∼
which reverses the signs of the generators in the group but not in the subgroup. Multiplying
the respective sides of equations (14) and (79) gives

gL2 ∼
g

−1
= L′2 (80)

in which h has been eliminated thus emphasizing that the action onMA, specified byKBA,
is determined byL2. In the notation used previously we have{

τA,L
2
} = −2L2

,BKAB (81)

as the significant part of the information. We multiply from the left byL−2
(
K−1

)
CA

to see
that (

K−1
)
CA

[
L−2τAL

2 + τA
] = −2iL−2L2

,C (82)

then multiplying from the right by1
2τ

B and tracing yields(
K−1

)
CA

[
δAB + 1

2 Tr
(
L−2τAL

2τB
)] = −i Tr

(
L−2L2

,CτB
)

(83)

and comparison with equations (58) and (64) makes clear how the square root can be taken.
We define (

k−1
)
CA

[δAB + RAB ] = i Tr
(
τBL

−1L,C
)

(84)

where the sign in taking the square root has been picked for convenience. Then equations
(66) and (67) reveal that(

k−1
)
QT

= (
K−1

)
QA
RAD

(
[1 + R]−1

)
DT

(85)

which the reader may enjoy confirming, reproduces the obvious inverse ofKQT in equation
(40) whenθ is halved. This clarifies the sense of the square root. In an entirely analogous
way we may write(

k−1
)
CB
RB3 = i Tr

(
τ3L

−1L′
C

)
(86)
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and discover

λA3 = RA3 −KAB
(
k−1

)
BF
RF3. (87)

Substitution of the results from equation (85) and (60) into equation (79) confirms the
expression found in equation (71) forvF3, while similar substitutions into equation (87)
retrieve the result previously given in equation (44). We therefore confirm the expressions
for the transformation properties and covariant derivatives of the standard fields. The results
given in this last section are not directly retrievable (as far as we know) by truncation of the
results in [25], since the full chiral structure allowed shortcuts to be taken in the calculations
in that paper. It is therefore reassuring to find that the results nevertheless still coincide
with those resulting from the truncation method, even though in this particular case the
justification for such truncation was previously missing.

4. Field redefinitions

We have alluded several times to the generality and utility of our parametrization. Now it is
time to see the scheme in action. Consider first the coordinates resulting from a constraint on
the singlet in the chiralSU2 triplet representation. This is directly embedded in the familiar
chiral σ -model [32–34], and we shall retain the nomenclature ofσ -model coordinates. In
chiral SU2, one introduces a multiplet

8 = πAτ
Aγ5 + σ (88)

transforming as aqq̄ bispinor, where

q → q − iθ3
1
2τ

3q − iφA 1
2τ

A(iγ5)q (89)

exactly as in equation (1). It is trivial to see that the group action on this three-dimensional
multiplet is

πA → πA + εA3Bθ3πB + φAσ (90)

σ → σ − φAπA (91)

and we recognise a normal linear representation in which the scalar fieldσ is aU1 singlet. (In
chiral SU2 × SU2 the corresponding multiplet is four dimensional; there are 3 pseudoscalar
fields.) In this scheme the nonlinearity results from imposing the chiralSU2 invariant
constraint

σ 2 + πAπA = f 2
π (92)

wherefπ is constant, to eliminate theσ field. The transformation law is then

πA → πA + εA3Bθ3πB + φB
[
f 2
π − π2

]1/2
δAB (93)

whereπ2 = πAπA, and we have arbitrarily selected the positive square root. We emphasize
that this is an example of the transformation laws derived earlier for a particular choice
of our arbitrary functionθ(π). Obviously, the simple form of this transformation law,
together with the intuitive feeling for the nonlinearity arising from the constraint, have
made this a popular choice in the literature. However, we now turn to the stereographic
choice of coordinates used by Zumino [13] to allow the introduction of supersymmetry by
emphasizing the K̈ahler properties of the 2-sphere. Things now look very different. The
two real coordinates on the sphere (pseudoscalar fields) are replaced by a single complex
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variablez. Now the metric is a Hermitian form, and the non zero components are written
as

gzz̄ = ∂2V

∂z∂z̄
(94)

where V is a potential function, so that the usual cross derivative constraints [13] are
satisfied for this to be a K̈ahler manifold. In this framework, the nonlinear transformation
law for the coordinates takes the form

z → z + iθ3z + cw

2
+ w̄z2

2c
(95)

where

w = φ1 + iφ2 (96)

c is constant (identifiable as 2fπ ), and we note that this transformation law is holomorphic
in z. Of course it is simple to change to a more familiar pair of real variables, now
xA (A = 1, 2), by setting

z = x1 + ix2 (97)

and we find that equation (95) yields

xA → xA + εA3Bθ3xB + φB

[
δAB(c

2 − x2)

2c
+ xAxB

c

]
(98)

where

x2 = xAx
A (99)

and equation (96) has been used. By comparing theδAB term in equations (30) and (93),
using (40), we discover

π cotθ = [f 2
π − π2]1/2 (100)

and similarly comparing equations (30) and (98), again using (40),

2cx cotθ = c2 − x2 (101)

emerges. Direct comparison of these last two results gives

π2 = 4c2f 2
π x

2

(c2 + x2)2
(102)

or equivalently

πA = 2cfπxA
c2 + x2

(103)

as the connection between the two coordinate systems. We note again thatc may be
identified with 2fπ , when the equality of the two coordinate systems is transparent in the
small field limit. This simple example, we hope, makes clear the advantage of working
with the general coordinate treatment presented in this paper.
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5. Conclusions

We have pointed out that in two active research areas (namely electric–magnetic duality, and
the extension of chiral perturbation theory to the supersymmetric domain) the incorporation
of supersymmetry forces the inclusion of extra pseudo-Goldstone bosons. The mathematical
technique required is daunting for the non-expert, and the resulting effective Lagrangians
are not uniquely determined. However the chiralSU2 model described here is uniquely
embedded in the above frameworks and retains many of their more physical features. It is
an ideal theoretical laboratory since it concerns the simplest Kähler manifold of all. (The
mathematics requires little more than an ability to multiply Pauli matrices.) Finally, as
we have shown in section 4, our general coordinate treatment really does yield a very
transparent connecting framework incorporating previously unrelated features. We hope the
model provides both insight into the general structures involved, and offers an easier route
into this research for the uninitiated than is usually the case.
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